If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-24x-99=0
a = 4; b = -24; c = -99;
Δ = b2-4ac
Δ = -242-4·4·(-99)
Δ = 2160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2160}=\sqrt{144*15}=\sqrt{144}*\sqrt{15}=12\sqrt{15}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-12\sqrt{15}}{2*4}=\frac{24-12\sqrt{15}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+12\sqrt{15}}{2*4}=\frac{24+12\sqrt{15}}{8} $
| (1.6)^3x=7 | | –10p=–10−5p | | 3x-15+6x+80+4x+65+5x+10+7x=360 | | 0.4x0.7= | | 5−–2b=19 | | 4u+17=20u-6-16u | | 12v-7v=16 | | 2x-3-x=4-12 | | 4x+7=4(x+3)-86 | | 3x-24=8x+11 | | 7x+19=x+7 | | 11-3x=75-(-1)= | | x/4.1=-1 | | 5(f-17)=40 | | 0.5(3-8x)+12=10(1-0.5x) | | 25-5x=19-x | | 4x+7=4(x+3)-8(x+5) | | 14+5x4=50-4x4 | | –15n+12n=12 | | -20+6v+4=20+3v | | 12x+500=1700 | | s÷4=8 | | 4z+59+z+16=180 | | 2(x-6)=7x-3(x+5) | | 13^2+a^2=20^2 | | 34h-8=2h+2 | | 9•y=-72 | | -204=6(8x-2) | | 5v+10v+v+20=180 | | 1x-22=44 | | −6=3/z | | -8x-4=-6x-20 |